Dynamic Programming
Longest Ascending Subsequence
Examples Input: A = {5, 2, 6, 3, 4, 7, 5} Output: 4 Because [2, 3, 4, 5] is the longest ascending subsequence.
5
2
6
3
4
7
5
1
1
2
2
3
4
4
public class Solution {
public int lengthOfLIS(int[] nums) {
if (nums.length == 0) {
return 0;
}
int[] dp = new int[nums.length];
dp[0] = 1;
int maxans = 1;
for (int i = 1; i < dp.length; i++) {
int maxval = 0;
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
maxval = Math.max(maxval, dp[j]);
}
}
dp[i] = maxval + 1;
maxans = Math.max(maxans, dp[i]);
}
return maxans;
}
}Longest Ascending Subarray
M[i] represent within the range from the beginning to the i-th element, the max length of the ascending subarray
5
1
2
0
1
7
0
1
1
2
1
2
3
1
M [ i ] = M [ i -1] + 1 if num [ i ] > num [ i - 1 ] else M [ i ] = M [ i - 1]
Longest Valid Partentheses
给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度。
输入: "(()" 输出: 2 解释: 最长有效括号子串为 "()" 示例 2:
输入: ")()())" 输出: 4 解释: 最长有效括号子串为 "()()"
0 0 0 0 0 0
0 0 2 2 4 4
用一个
dp数组来存放以每个index为结尾的最长有效括号子串长度,例如:dp[3] = 2代表以index为3结尾的最长有效括号子串长度为2很明显
dp[i]和dp[i-1]之间是有关系的
当
s[i] == ‘(’时,dp[i]显然为0, 由于我们初始化dp的时候就全部设为0了,所以这种情况压根不用写当
s[i] == ')'时, 如果在dp[i-1]的所表示的最长有效括号子串之前还有一个'('与s[i]对应,那么dp[i] = dp[i-1] + 2, 并且还可以继续往前追溯(如果前面还能连起来的话)
Last updated
Was this helpful?